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SUMMARY

In this work, we develop a new model to solve the advection–dispersion transport equation on unstructured
triangular meshes. The model combines numerical methods that are specifically suited to achieve high
accuracy for each type of equation without using the time splitting procedure. It is based on a combination
of the upwind discontinuous Galerkin (DG) method for advection and the multipoint flux approximation
(MPFA) method for dispersion.

In contrast to mixed finite elements, MPFA methods provide fluxes at element interfaces explicitly by
weighted sums of discrete element concentrations. Therefore, the combination of DG and MPFA methods
allows taking into account total flux boundary conditions while using different numerical techniques.

A theta-scheme time discretization is developed for advection and an implicit scheme for dispersion.
Accuracy of the numerical model is shown by simulating (i) the transport of a tracer in a simplified
bidimensional problem with highly unstructured mesh and (ii) a laboratory-scale experiment with high
viscosity contrasts. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The most common mathematical model to simulate tracer transport in porous media is an
advection–dispersion partial differential equation (PDE), which has the following formulation:

L(C) = �C
�t

+∇ ·(VC)−∇ ·(D ·∇C)=0

x ∈ �, t ∈[0,T ]
(1)
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688 A. YOUNES AND P. ACKERER

where C(x, t) [M/L3] is the unknown concentration at location x and time t , and D [L2/T ] is
the dispersion tensor defined by

Di j =(�T|V|+Dm)�i j +(�L−�T)
viv j

|V| , i, j =1,2 (2)

L(C) is the differential operator; V [L/T ] is a given fluid velocity of components vi ; �L and
�T [L] are the longitudinal and transverse dispersivities; �i j is the Kronecker delta function; and
Dm [L2/T ] is the molecular diffusion coefficient. T is the end of the simulation time period
starting at time zero.

Equation (1) is subject to the initial and boundary conditions:

C(x,0) = C0(x), x∈�

C(x, t) = g1(x, t) (x∈��1, t>0)

(−D ·∇C)g�� = g2(x, t) (x∈��2, t>0)

(VC−D ·∇C)g�� = g3(x, t) (x∈��3, t>0)

(3)

where � is a bounded, polygonal open set of R2; ��1, ��2 and ��3 are partitions of the boundary
�� of � corresponding to Dirichlet, Neumann and total flux boundary conditions; and g�� is the
unit outward normal to the boundary ��.

In many field situations, especially for small-scale simulations, the hyperbolic advective part of
the PDE becomes dominant. In this case, standard numerical methods, such as finite elements or
finite volumes, generate solution with numerical diffusion and/or non-physical oscillations.

On the other hand, the discontinuous Galerkin (DG) method has received more and more
attention in the last two decades [1–3]. The flexibility of the DG method is its main advantage
compared with other standard Euler schemes (finite volumes, finite elements), especially in handling
complicated geometries, defining strategies for grid refinement or un-refinement and changing the
degree of approximation from one element to the other. Moreover, the DG solution satisfies the
mass conservation equation locally element by element.

Since the first DG method introduced in [4], the methods have been developed for hyperbolic
problems [5–8] and elliptic problems [9–13]. A unified analysis for many DG methods for elliptic
problems is given in [14].

When used for PDEs containing higher than first spatial derivatives, the DG methods have more
degrees of freedom compared with the traditional finite element methods. This is often considered
as a drawback of the DG or the local discontinuous Galerkin (LDG) method [15]. Moreover, the
unknowns of the LDG method in any element depend, in general, on the neighbors of the element
and the neighbors of the neighbors [1], which leads to less sparse matrix than with standard
methods.

Contrary to the DG methods for elliptic problems, the DG methods for hyperbolic systems have
been proven to be clearly superior to the already existing finite element methods [14]. With DG,
we obtain a high-resolution scheme for advection that maintains the local conservation of finite
volume methods but allows high-order approximations to enter through a variational formulation
rather than by some hybridized difference or functional reconstruction [16].

Therefore, to solve the whole convection–diffusion equation, time splitting techniques are often
applied to Equation (1). Advection and dispersion are then solved using different numerical tech-
niques that are specifically suited to achieve high accuracy for each type of equations. In the
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SOLVING THE ADVECTION–DISPERSION EQUATION 689

literature, several authors [3, 17–20] combined the DG method for advection with the mixed finite
element method for dispersion.

The mixed finite element method is well suited for dispersion since it is locally conservative
and can handle general irregular grids. However, it is well known [21, 22] that the discretization of
the dispersion equation leads to an indefinite system matrix, which is generally circumvented by
hybridization. In this case, the system is solved for the Lagrange multipliers and has more unknowns
than the standard Eulerian methods (the number of edges instead of the number of elements).

Moreover, when the time splitting procedure is used, the total flux boundary conditions on ��3

cannot be prescribed. Indeed, in this case, we need the boundary flux for each operator while only
the sum of the advective and the dispersive fluxes g3(x, t) is given.

In this work, we describe a new scheme to solve the transport equation by using a combination of
the DG method for advection and the multipoint flux approximation (MPFA) method for dispersion.
The combination of DG and MPFA methods allows using different numerical techniques that
are specifically suited to achieve high accuracy for each type of equations without using the
time splitting procedure. Coupling different schemes to solve a PDE has already been applied to
the transport equation and leads to an efficient solver. Siegel et al. [3] coupled DG with mixed
hybrid finite element. Here, we chose the MPFA discretization, because this method requires only
cell-centered concentrations as opposed to the mixed or the mixed hybrid finite element method.

The scheme is developed for unstructured triangular meshes. These meshes are suitable for
practical problems with complex geometry and local mesh refinement. A theta-scheme time
discretization is used for advection and a fully implicit scheme is used for dispersion.

For explicit advection schemes, limiters are necessary to remove unphysical oscillations from the
numerical solution. In this work, a new slope limiter without any iterative procedure is developed
for triangular elements.

For dispersion/diffusion, a symmetric formulation of the MPFA method is developed by
changing the localization of the continuity points.

Numerical experiments, given in the last part of the paper, show the efficiency of the developed
model for (i) a large range of grid Peclet numbers and highly unstructured meshes in the case of
transport of tracer in a simplified bidimensional problem with uniform velocity and (ii) a laboratory-
scale experiment performed with a high viscosity contrast between injected and displaced fluids.

2. DISCRETIZATION OF THE TRANSPORT EQUATION

The transport equation (1) is expressed in the following mixed form:

�C
�t

+∇ ·(VC)+∇ ·qD = 0

qD = −D∇C
(4)

where qD is the dispersive flux, and QD
�Ei=

∫
�EiqD ·g�Ei is the total dispersive flux across the edge

�Ei of E .
Over the element E , we assume a constant divergence of qD, which is given by

∇ ·qD= 1

|E |
∑
�Ei

QD
�Ei (5)

where |E | is the area of E .
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690 A. YOUNES AND P. ACKERER

2.1. The upwind DG method for advection

The DG method is a high-resolution scheme for advection that achieves high-order accuracy while
suppressing spurious oscillations. The method was used for multidimensional problems while
incorporating practical slope limiters in [5].

With the DG method, the advective fluxes are uniquely defined by solving a Riemann problem at
the interface of two elements. The DG’s solution is shown to be total variation diminishing in [23].

In what follows, we recall briefly the mathematical developments of the upwind DG method.
Additional information about the method can be found in [8, 24].

The physical domain � is discretized with triangular elements {E}. The DG method seeks weak
solutions of (4) using the following discontinuous finite element space:

Vh ={v∈L∞(�) :vh |E ∈V (E)} (6)

where V (E) represents the approximation space on the triangular element E .
Basis functions can be discontinuous across inter-element boundaries. The approximate solution

Ch(x, t) is expressed with linear basis functions �E
i on each element E as follows:

Ch(x, t)|E =
3∑

i=1
C̃ E
i (t)�E

i (x) (7)

where C̃ E
i (t) are the three unknown coefficients corresponding to the degrees of freedom.

The three unknowns for each element are the average value of the concentration defined at the
triangle centroid (x E , yE ) and its deviations in each space direction [8] with the corresponding
interpolation functions:

C̃ E
1 (t) = CE , �E

1 (x, y)=1

C̃ E
2 (t) = �CE

�x
, �E

2 (x, y)= x−x E

C̃ E
3 (t) = �CE

�y
, �E

3 (x, y)= y− yE

(8)

Contrary to the DG finite element method used in [3, 20] where unknowns correspond to the
concentration at each node of the element, the used approximations do not depend on the geometry
of the mesh elements but only on the space dimension (Rn). For example, for quadrangular
elements, the used scheme requires three unknowns to define the linear polynomial function instead
of four (the number of nodes for quadrangles) as in [20].

The variational formulation of (4) over the element E using �E
i as test functions gives

∑
j

dC̃ E
j

dt

∫
E

�E
j �

E
i −∑

j

∫
E
C̃ E

j �E
j V ·∇�E

i +
∫

�E
C∗�E

i V ·g�E +
∫
E

1

|E |
∑
�Ej

QD
�Ej�

E
i =0 (9)

which can be expressed as

∑
j

dC̃ E
j

dt

∫
E

�E
j �

E
i −∑

j

∫
E
C̃ E

j �E
j V ·∇�E

i +
∫

�E
C∗�E

i V ·g�E +∑
�Ej

QD
�Ej

∫
E

�E
i =0 (10)

where C∗ is the upstream concentration on �E .
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The third term corresponds to the boundary integral over the three edges of the element E :∫
�E

C∗�E
i V ·g�E =

3∑
j=1

QE
�Ej

|�Ej|
∫

�Ej
C∗

�Ej�
E
i (11)

where g�Ej is the unit outward normal vector to the edge �Ej of length |�Ej|, and QE
�Ej is the water

flux across �Ej.
C∗

�Ej is the concentration over �Ej, defined using an appropriate Riemann solver [25], which
corresponds to the upstream concentration value:

C∗
�Ej=�E�EjC̃

E
�Ej+(1−�E�Ej)C̃

Ej
�Ej (12)

where Ej is the adjacent element of E such that �Ej is the common edge of E and Ej. At each
edge, we define

�E�Ej=
{
1 if V ·g�Ej�0

0 if V ·g�Ej<0

Substituting the three test functions �E
i into (9) leads to a system of three ordinary differential

equations over E .
If we consider an element E with its three adjacent elements E1, E2 and E3 (Figure 1), the

obtained system can be expressed in the following matrix form:

[A]

⎛⎜⎜⎜⎜⎜⎜⎜⎝

dC̃ E
1

dt
dC̃ E

2

dt
dC̃ E

3

dt

⎞⎟⎟⎟⎟⎟⎟⎟⎠
= [B]

⎡⎢⎣C̃
E
1

C̃ E
2

C̃ E
3

⎤⎥⎦−[M0]
⎡⎢⎣C̃

E
1

C̃ E
2

C̃ E
3

⎤⎥⎦−[M1]
⎡⎢⎣C̃

E1
1

C̃ E1
2

C̃ E1
3

⎤⎥⎦

−[M2]
⎡⎢⎣C̃

E2
1

C̃ E2
2

C̃ E2
3

⎤⎥⎦−[M3]
⎡⎢⎣C̃

E3
1

C̃ E3
2

C̃ E3
3

⎤⎥⎦−

⎡⎢⎢⎢⎣
∑
�Ej

QD
�Ej

0

0

⎤⎥⎥⎥⎦ (13)

with

Ai, j =
∫
E

�E
j �

E
i , Bi, j =

∫
E

�E
j V ·∇�E

i

M0
i, j =�E�E1

QE
�E1

|�E1|
∫

�E1
�E
i �E

j +�E�E2
QE

�E2
|�E2|

∫
�E2

�E
i �E

j +�E�E3
QE

�E3
|�E3|

∫
�E3

�E
i �E

j

M1
i, j =(1−�E�E1)

QE
�E1

|�E1|
∫

�E1
�E
i �E1

j , M2
i, j =(1−�E�E2)

QE
�E2

|�E2|
∫

�E2
�E
i �E2

j

M3
i, j =(1−�E�E3)

QE
�E3

|�E3|
∫

�E3
�E
i �E3

j
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692 A. YOUNES AND P. ACKERER

Figure 1. The triangular element E and its three neighbors.

All integrals are calculated analytically using (8). For example, the mass matrix reduces to

[A]=
⎛⎜⎝|E | 0 0

0 Ixx Ixy

0 Ixy Iyy

⎞⎟⎠ (14)

with Ixx =∫E (x−x E )2, Iyy =∫E (y− yE )2 and Ixy =∫E (x−x E )(y− yE ).
The matrix [M�]3×3 contains the contribution of the element E� on E and vanishes ifV ·g�E��0.
We use the so-called theta-scheme for the temporal discretization of advection. For dispersion

fluxes, we use a fully implicit time discretization.
Therefore, system (13) becomes

1

�t
[A]

⎛⎜⎝C̃ E
1

C̃ E
2

C̃ E
3

⎞⎟⎠
n+1

−�[B]

⎡⎢⎢⎣
C̃ E
1

C̃ E
2

C̃ E
3

⎤⎥⎥⎦
n+1

+�[M0]

⎡⎢⎢⎣
C̃ E
1

C̃ E
2

C̃ E
3

⎤⎥⎥⎦
n+1

+�[M1]

⎡⎢⎢⎣
C̃ E1
1

C̃ E1
2

C̃ E1
3

⎤⎥⎥⎦
n+1

+�[M2]

⎡⎢⎢⎣
C̃ E2
1

C̃ E2
2

C̃ E2
3

⎤⎥⎥⎦
n+1

+�[M3]

⎡⎢⎢⎣
C̃ E3
1

C̃ E3
2

C̃ E3
3

⎤⎥⎥⎦
n+1

+

⎡⎢⎢⎣
∑
�Ej

QD
�Ej

0

0

⎤⎥⎥⎦
n+1

(15)

= 1

�t
[A]

⎛⎜⎜⎝
C̃ E
1

C̃ E
2

C̃ E
3

⎞⎟⎟⎠
n

+(1−�)[B]

⎡⎢⎢⎣
C̃ E
1

C̃ E
2

C̃ E
3

⎤⎥⎥⎦
n

−(1−�)[M0]

⎡⎢⎢⎣
C̃ E
1

C̃ E
2

C̃ E
3

⎤⎥⎥⎦
n

−(1−�)[M1]

⎡⎢⎢⎣
C̃ E1
1

C̃ E1
2

C̃ E1
3

⎤⎥⎥⎦
n

−(1−�)[M2]

⎡⎢⎢⎣
C̃ E2
1

C̃ E2
2

C̃ E2
3

⎤⎥⎥⎦
n

−(1−�)[M3]

⎡⎢⎢⎣
C̃ E3
1

C̃ E3
2

C̃ E3
3

⎤⎥⎥⎦
n
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SOLVING THE ADVECTION–DISPERSION EQUATION 693

Note that the full implicit scheme (�=1) does not require any flux or slope limiting procedure.
However, these schemes are not suited for transient hyperbolic problems because they induce large
numerical diffusion and accuracy demands time steps similar in size to that of explicit schemes.

In the developed model, the value of � has to be fixed by the user before the simulation.
The best value of � can be problem dependent. When the explicit advection scheme (�=0) is
used, the Courant–Friedrichs–Lewy (CFL) criterion has to be fulfilled for all elements in the
domain. The concentrations obtained by the resolution of (15) may contain significant unphysical
oscillations. In this case, limiters are necessary to remove these oscillations from the numerical
solution before starting the new time step.

2.2. The slope limiting

It is known that when using constant cell approximations, the numerical diffusion due to upwinding
is high enough to keep the scheme stable. However, by using higher-order approximation, the
scheme produces non-physical oscillations near shocks. In such a case, the use of an appropriate
slope limiter is crucial to ensure the stability of the method.

Many slope limiter techniques for unstructured triangular meshes are proposed in the literature.
Chavent and Jaffré [26] introduced a limiter based on Van Leer’s MUSCL limiter [27]. The degrees
of freedom adopted are the concentrations at the vertices of each element. This technique may fail
to smear completely the spurious oscillations and new extrema may be created at the midpoints
of the grid edges [28]. To avoid this problem, a slope limiting operator that aims at eliminating
oscillations at midpoint edges was proposed in [28]. Concentrations at vertices are then directly
computed by using the reconstructed midpoint edge values. Other slope limiter techniques using
the midpoints of edges as degrees of freedom have been developed for unstructured triangular
elements (for example, [8, 29]).

Slope limiter techniques are often based on an iterative algorithm that may be central processing
unit (CPU) consuming. In what follows, we briefly describe a new slope limiter for triangular
elements with the family of linear basis and test functions adopted. The slope limiting does not
contain any iterative procedure contrary to the scheme proposed in [28] for triangles. In order to
satisfy the local maximum principle, the method ensures that no new extrema are created at the
midpoints of the grid edges.

The concentration C̃mi at (xmi , ymi ), the midpoint of the edge �Ei (see Figure 1), is obtained
from (7) and (8):

C̃mi =CE + �C̃ E

�x
(xmi −x E )+ �C̃ E

�y
(ymi − yE ) (16)

The limiting is performed only on �C̃ E/�x and �C̃ E/�y in order to obtain reconstructed values
(�CE/�x,�CE/�y). CE is kept unchanged to preserve the local mass balance.

The reconstructed midpoint values Cmi have to verify the following two properties:

1. If C̃mi is the concentration at the edge �Ei, the common edge of elements E and Ei, then

Cmi is between CE and CEi, respectively, the mean concentrations in E and Ei.
2. The reconstructed value Cmi is as close as possible to the initial value C̃mi .

Copyright q 2008 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 58:687–708
DOI: 10.1002/fld



694 A. YOUNES AND P. ACKERER

The above optimization problem is equivalent to the following one:
For a given C̃E =(C̃m1, C̃m2, C̃m3), find ĈE =(Cm1,Cm2,Cm3) solution to the problem:

min‖ĈE −C̃E‖2 subject to linear constraints

min(CE ,CE1)�Cm1 � max(CE ,CE1)

min(CE ,CE2)�Cm2 � max(CE ,CE2)

min(CE ,CE3)�Cm3 � max(CE ,CE3)

(17)

This problem is solved without iterations in three steps:

• First, each C̃mi is set to its nearest value between CE and CEi:

Cmi =

⎧⎪⎪⎨⎪⎪⎩
min(CE ,CEi) if C̃mi<min(CE ,CEi)

max(CE ,CEi) if C̃mi>max(CE ,CEi)

C̃mi otherwise

(18)

• Second, from each couple (Cmi ,Cm j )i�3, j�3,i �= j , we calculate a couple ((�CE/�x)i j ,
(�CE/�y)i j ) by solving the following system (obtained from (16)):

(xmi −x E )

(
�CE

�x

)
i j

+(ymi − yE )

(
�CE

�y

)
i j

= Cmi −CE

(xm j −x E )

(
�CE

�x

)
i j

+(ym j − yE )

(
�CE

�y

)
i j

= Cm j −CE

(19)

• Finally, to ensure that no extrema are created at all midpoint edges, (�CE/�x,�CE/�y) are
obtained by ⎧⎪⎪⎪⎨⎪⎪⎪⎩

�CE

�x
=minmod

((
�CE

�x

)
12

,

(
�CE

�x

)
13

,

(
�CE

�x

)
23

)
�CE

�y
=minmod

((
�CE

�y

)
12

,

(
�CE

�y

)
13

,

(
�CE

�y

)
23

) (20)

where the minmod function is

minmod(a1, . . . ,am)=
⎧⎨⎩s · min

1�i�m
|ai | if s=sign(a1)=·· ·=sign(am)

0 otherwise
(21)

2.3. The MPFA method for the dispersive fluxes

The MPFA method is an improved finite volume method. Contrary to the standard finite volume
schemes, it allows one to treat rigorously the transport problem with a full discontinuous dispersion
tensor on unstructured meshes.
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The MPFA method has similar properties than the mixed finite element method. Indeed, both
are locally conservative and handle general irregular grids on anisotropic heterogeneous domains.
Several papers have been devoted to MPFA methods recently [30–33]. In contrast to mixed finite
elements, MPFA methods provide fluxes at element interfaces explicitly by weighted sums of
discrete element concentrations. The link between MPFA and mixed finite elements of Raviart
Thomas or Brezzi–Douglas–Marini has been studied in [32, 34–37].

The basic idea of the MPFA method [30, 36] is to divide each triangle into three subcells
(Figure 2). Inside the subcell (xi ,x2i ,x,x

1
i ) of the corner xi , we assume a linear variation of the

concentrations between c1i , c
2
i and CE , the concentration values at, respectively, midpoint edges

x1i and x2i and the centre x of the element E (Figure 2).
Therefore, subedge (half-edge) dispersive fluxes, taken positive for outflow, are given by(

Q1
i

Q2
i

)
= 1

2|Txx1i x2i |

⎛⎝(x1i −xi )⊥D(x2i −x)⊥ (x1i −xi )⊥D(x−x1i )
⊥

(xi −x2i )
⊥D(x2i −x)⊥ (xi −x2i )

⊥D(x−x1i )
⊥

⎞⎠
︸ ︷︷ ︸

GA
i

⎛⎝c1i −CE

c2i −CE

⎞⎠ (22)

where |Txx1i x2i | is equal to the area of the triangle spanned by the points x, x1i and x2i , and the vector

(x1i −xi )⊥ is obtained by a �/2 rotation of the vector x1i −xi .
All subcells sharing the vertex i create an interaction volume (see Figure 3).
The discretization is accomplished by assuming continuous fluxes across each of the subedges

of the interaction region and a weak continuity condition of the concentration across the same
subedges. From these assumptions, an explicit discrete flux can be found after the resolution of a
local linear system and elimination of the edge concentration for each subedge of the interaction
volume. Each subedge dispersive flux can then be expressed explicitly as a weighted sum of the
cell concentrations of elements forming the interaction volume. For example, for Figure 3 we
obtain

QD,1
i =

5∑
k=1

tki C
Ek (23)

where tki are transmissibility coefficients.

kx

ix

x
2
ix

1
ix

1
iQ

2
iQ

jx

Figure 2. Triangle splitting into four subcells and linear concentration approximation on each subcell.
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Note that contrary to the mixed or the mixed hybrid method, the computation of the fluxes
requires cell-centred concentrations only with the MPFA method.

Equation (23) is expressed for the six half fluxes of element E . The sum of these fluxes gives
the exchange of mass by dispersion between E and its adjacent elements. The sum of dispersive
fluxes is then replaced in (15) to obtain the final discrete system to solve.

2.3.1. Localization of continuity points: symmetric or non-symmetric MPFA formulation. The
MPFA method gives symmetric or non-symmetric dispersion matrix depending on the localization
of the continuity points. Indeed, as shown in [31], symmetry of the global matrix is guarantied
only if this property is respected for each local matrix GA

i .
Continuity of the concentration is generally prescribed at the element-edge mid-point. This

corresponds to w=1 (see Figure 4). In this case, the local matrix GA
i in (22) is always non-

symmetric.
However, as shown in [36], there is flexibility in the location of the continuity point. Its position

can be chosen to lie at any point between the edge midpoint and the vertex (Figure 4).

Figure 3. The interaction region sharing the vertex i .
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Figure 4. Two locations of the continuity point at the subcell interface. Local
pressure support for w=1.0 and 2

3 .
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The symmetry is achieved when the continuity point is localized at w= 2
3 (Figure 4). In this

case, x1i ,xi ,x
2
i ,x is a parallelogram and the local matrix GA

i given in (22) becomes

GsAi = 1

2|Txx1i x2i |

(
(xi j −xi )⊥D(x2i −x)⊥ (xi j −xi )⊥D(x−x1i )

⊥

(xi −xik)⊥D(x2i −x)⊥ (xi −xik)⊥D(x−x1i )
⊥

)
(24)

which is symmetric when replacing x=(xi +x j +xk)/3, xi j =(xi +x j )/2, xik =(xi +xk)/2,
x1i =xi/3+2xi j/3 and x2i =xi/3+2xik/3.

Therefore, one can obtain a symmetric MPFA formulation for general triangular elements without
any approximate numerical integration. Recall that for quadrilateral grids, the MPFA method leads
to a symmetric matrix only in the case of parallelograms (constant Jacobian) [31].

Note that when the explicit advection scheme (�=0) is used in (15), the final system leads
to a symmetric positive definite matrix. This allows using standard iterative solvers based on the
conjugate gradient method, especially for very large systems that cannot be solved with direct
solvers (because of memory requirement). The number of unknowns in this case is reduced to the
total number of elements in the domain.

3. NUMERICAL EXPERIMENTS

Numerical experiments are performed to show the efficiency of the transport model based on
DG and MPFA methods. In the first part, the advection–dispersion equation is solved for the
simulation of a simplified bidimensional problem with highly unstructured mesh. Before simulating
the transport equation, the flow equation is firstly solved with the mixed hybrid finite element
method on triangles [38, 39] which gives accurate velocities with continuous normal component
across the inter-element boundary.

In the second part, the developed model is used for the simulation of a very detailed laboratory
experiment. Experiments at the laboratory scale are very useful for model verifications. Parameters,
boundary conditions and state variables are known and the modeling of these experiments does
not require any calibration. In this part, we simulate the experiments run by Loggia [40] who
studied both stable and unstable flows occurring in a layered medium with density and viscosity
contrasts.

3.1. Test case 1: transport of tracer on unstructured mesh with local mesh refinement

In this section, the developed DG MPFA model is used for the resolution of the transport of tracer
in a rectangular spatial domain �. The obtained results are compared with the analytical solution
given in [41]. The physical domain is discretized with an unstructured mesh of 2070 nodes and
4004 elements as shown in Figure 5.

The mesh refinement is located close to transverse concentration fronts in order to increase
the sensitivity of the spatial resolution. The flow is one-dimensional, horizontal and uniform
(vx =1m/day,vy =0), and the physical problem treated corresponds to a constant injection into a
domain originally free of contaminant. The boundary conditions for the problem are of Dirichlet
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Figure 5. The physical domain � discretized with unstructured triangular elements.

type at the inflow with

C(0, y)=0 ∀y∈[0,12[
C(0, y)=1 ∀y∈[12,28]
C(0, y)=0 ∀y∈]28,40]

A zero diffusive flux is prescribed at the outflow boundary. The results are given for different
ranges of grid Peclet number using the following dispersion parameters:

• Sim1: �l =0.02m, �t =0.005m, Dm =0, i.e. a grid Peclet number varying from 10.1 to 146.7.
This corresponds to an advection-dominated problem.

• Sim2: �l =0.2m, �t =0.05m, Dm =0, i.e. a grid Peclet number varying from 1.01 to 14.67.
• Sim3: �l =2m, �t =0.5m, Dm =0, i.e. a grid Peclet number varying from 0.101 to 1.467.

For all the subsequent simulations, we consider the solution at time simulation T =60days. Simu-
lations performed with �=0, 0.6 and 1 are compared with the analytical solution.

With the explicit advective scheme (�=0), the time step is restricted by the CFL condition. For
triangular elements, the CFL is defined for each element E as follows [42]:

(CFL)E =
∑3

j=1 |QE
�Ej|

2|E | �t (25)

with QE
�Ej the water flux across the edge �Ej.

For the developed first-order scheme, the solution is stable only for CFL�0.5. Therefore, the
global time step is limited by a critical value �tc:

�t��tc=min
E

(
|E |∑3

j=1 |QE
j |

)
(26)

The value of �tc can be very small for unstructured meshes and/or heterogeneous velocities. For
the mesh of Figure 5, we obtain �tc	0.12days.

In this work, the linear system of equations obtained by the transport is solved with a direct solver.
Indeed, transport problems are often simulated for a steady-state flow (constant velocity during
time). In this case, the transport matrix does not change and direct solvers are very appropriate
since the system matrix has to be factorized only once. All simulations are performed with the
combined unifrontal/multifrontal UMFPACK direct solver [43].
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Results for sim1, sim2 and sim3 using different time steps are plotted in Figures 6–8. These
figures also give the required CPU time and the relative L1 error defined by

ErrL1=
∑Ne

E=1 |E ||Cnum
E −C

analy
E |∑Ne

E=1 |E ||Canaly
E |

(27)

where Ne is the total number of elements.
Results of Figures 6–8 show that

• The DG MPFA model gives accurate results for the different advection/dispersion situations.
• The three schemes (�=0, 0.6 and 1) give accurate results with small errors when small time

steps are used (�t=�tc).
• The schemes �=0.6 and 1 are not limited by the CFL criteria. However, these schemes

generate numerical diffusion for large time steps. The numerical diffusion is significant for
the high advective case (sim1).

• The schemes �=0.6 and 1 require similar CPU time. The scheme �=0.6 gives results with
much less numerical diffusion than the scheme �=1. The error with �=0.6 is generally 50%
less significant than with �=1.

• The scheme �=0.6 with �t=5�tc gives close results (with similar errors) than the explicit
scheme with �t=�tc while the CPU time is reduced by a factor of 4.

• When used with �t=25�tc, the scheme �=0.6 gives acceptable results. The CPU time is
reduced by a factor of 10 compared with the explicit scheme.

Figure 6. Concentration distribution, error and CPU time with DG MPFA for different
� and �l =0.02m, �t =0.005m, Dm =0.
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Figure 7. Concentration distribution, error and CPU time with DG MPFA for different
� and �l =0.2m, �t =0.05m, Dm =0.

Figure 8. Concentration distribution, error and CPU time with DG MPFA for different
� and �l =2m, �t =0.5m, Dm =0.
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A finite volume formulation of the model (called FV MPFA) is easily obtained by removing the
second and the third equations of system (15) for each element. In this case, the problem is
solved for only one unknown (the mean concentration value) per element. The obtained scheme
corresponds to the standard upwind finite volume scheme for advection.

The dominant advective case (sim1) is then simulated with FV MPFA. Comparison between
Figures 9 and 6 shows that contrary to the DG MPFA model, the FV MPFA model adds significant
numerical diffusion to the solution for all values of �.

In conclusion, the performed numerical experiments show that the DG MPFA model gives
accurate results. The scheme �=0.6 is a good alternative to the full explicit scheme, especially
for highly unstructured meshes. The error introduced by this scheme is limited, especially with
moderate or high physical dispersion.

3.2. Test case 2: the Loggia’s experiments

In this section, the developed DG MPFA model is used for the simulation of the transport occurring
in a layered medium with density and viscosity contrasts.

The experiments were run on a tank of x=4.5cm, y=4.5cm and z=30cm (Figure 10), filled
with glass beads of various sizes distributed in layers. The characteristics of each layer are given
in Table I. The longitudinal dispersivity is equal to the diameter of the beads and the transverse
dispersivity is assumed to be 10 times smaller. The same porosity (�=0.4) is used for the four layers.

An input tank ensures homogeneous pressure and concentration at the upstream boundary of
the layers. All experiments are performed at a fixed temperature of 30◦C. A volumetric pump
maintains a fixed flow rate at the entry of the domain. Measured concentrations are based on

Figure 9. Concentration distribution, error and CPU time with FV MPFA for different �
and �l =0.02m, �t =0.005m, Dm =0.
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Figure 10. Experimental setup.

Table I. Porous media characteristics for the Loggia experiments.

Layer Hi (m) di (m) ki (m2)

1 1.22×10−2 85×10−6 7.1×10−12

2 1.08×10−2 155×10−6 23.7×10−12

3 1.08×10−2 194×10−6 37.2×10−12

4 1.22×10−2 238×10−6 55.8×10−12

H , thickness; d , average diameter; k, permeability.

acoustic process. It allows obtaining the average of concentration at five fixed altitudes (Figure 10).
A mixture of water–sucrose and water–glycerin is used to obtain large variations of viscosity
between the injected and the displaced fluids.

For this problem, flow and transport are strongly coupled. At each time step, we have to solve the
nonlinear system of PDEs describing the mass conservation of the fluid, the generalized Darcy’s
law and the transport equation of solute mass fraction:

�S
�h
�t

+�
��

�	

�	

�t
+�∇ ·q=0

q=−K
(

∇h+ �−�0
�0

∇z

)
�=�0+(�1−�0)	

�
�	

�t
+q·∇	−∇ ·D∇	=0

(28)
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where P is the fluid pressure [ML−1T−2], q Darcy’s velocity [LT−1], � the porosity [—],
K=k�0g/
 the hydraulic conductivity tensor [LT−1], k the permeability tensor [L2], g the gravity
acceleration [LT−2], � the fluid density [ML−3], 
 the fluid dynamic viscosity [ML−1T−1], 	 the
solute mass fraction [M of salt/M of fluid], h= P/�0g+z the equivalent freshwater head, S the
specific mass storativity related to head changes [L−1], �1 the maximum fluid density and �0 and

0 the density and viscosity of freshwater.

The flow system in (28) is solved using the lumped mixed finite element method [44]. The
advection–dispersion transport equation of solute mass fraction is solved with the developed
DG MPFA model using �=0.6, which turns to be more efficient than �=0 even for this case
where the flow matrix changes during computation (the values of the coefficients in the matrix
are changed but not their location). For this problem, the small opening at the bottom of the tank
induces very small time steps with the explicit advection scheme (�=0) due to the CFL constraint.

The time step management during the simulation is of heuristic type. The time step�tn is changed
depending on the number of iterations k necessary to reach convergence in the following way:

if k < 3, �tn =1.02�tn−1

if 3 � k<6, �tn =1.0�tn−1

if 6 � k, �tn =0.9�tn−1

(29)

System (28) is linearized with a Picard scheme and solved iteratively until the maximum variation
on both h and C becomes small enough (less than 10−7 in this case). If the convergence is not
reached after 20 iterations, the time step is divided by 2.

In order to test the developed model, two experiments were simulated, one with the injection
of a tracer and the other with a fluid of high viscosity (Table II).

The following state equations were also established for the second experiment:


 = 
0 exp(2.02	/	inj)

� = �0+53	/	inj
(30)

where 	inj is the mass fraction of the injected solution.
The modeling of the experiments is based on the following concepts:

• Due to symmetry, the system is modeled in a two-dimensional cross section perpendicular to
the layers (X–Z section).

• The input tank is not taken into consideration. It is assumed that the pressure is constant
within that tank and that the solute mixing is instantaneous (compared with the travel time
inside the porous medium) and perfect. Boundary conditions for flow and solute transport are
prescribed pressure and mass fraction of the injected fluid.

Table II. Initial and injected fluid characteristics.

Initial fluid Injected fluid

Exp. q (cm/h) Viscosity Density Viscosity Density

1 9.89 0.0057 1124.0 0.0057 1117.0
2 4.95 0.0035 1132.0 0.0267 1185.0

Viscosity is in kg/m/s and density in g/1.
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• The porous plate is taken into account and the measured flow rate is prescribed at the draining
pipe. The measured permeability is k=5×10−12m2 and porosity is equal to 0.2 for the porous
plate. Longitudinal and transversal dispersivities are assumed to be equal to 85×10−6 and
8.5×10−6m. The last two parameters are not very sensitive, due to the small dimension of
the porous plate. Dispersive fluxes are neglected at the outflow. The triangular discretization
is obtained by subdivision of a 24×142 rectangular mesh.

The first experiment is a tracer test; the density and viscosity of the injected fluid and the
displaced one are very close (Table II). The effect of the heterogeneities can be distinguished in the
results (Figure 11). Experimental and simulated average concentrations are plotted in Figure 12.

Figure 11. Mass fraction distribution (exp. 1).
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Figure 12. Measured (symbol) and computed breakthrough curves (exp. 1).
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Although no model calibration has been performed, the match between measured and computed
mass fractions is very good. The breakthrough of each layer is well reproduced by the model (time
period with abrupt increase in mass fraction). The transition zones between the breakthroughs
show a small increase in the concentration, due to mixing between the layers, which is also well
reproduced by the simulation. [b]

The second experiment consists in the injection of a fluid with a viscosity, which is about 7.5
times higher than the viscosity of the displaced fluid. The match between simulated and measured
mass fractions is still satisfactory (Figure 13). The effects of the heterogeneities are smoothed out
by the viscosity contrast. The presence of the injected fluid having a higher viscosity reduces the
effect of hydraulic conductivity. This phenomenon can be observed in Figures 14 and 15. Transverse
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Figure 13. Measured (symbol) and computed breakthrough curves (exp. 2).

Figure 14. Mass fraction distribution (exp. 2).
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Figure 15. Pathlines and travel times (time lag between two markers: 400 s).

transfer (between layers) is increased by the viscosity contrast and the effect of heterogeneity is
damped out.

4. CONCLUSION

With the time splitting procedure for the advection–dispersion equation, difficulties arise when the
total flux boundary condition is prescribed. Indeed, in this case, we need the boundary flux for
each operator while, only the sum of the advective and the dispersive fluxes is known.

To avoid this problem, a new model was developed to solve the advection–dispersion equation
on unstructured triangular meshes. The model uses a combination of the upwind DG method for
advection and the MPFA method for dispersion.

In contrast to mixed finite elements, MPFA methods provide fluxes at element interfaces explic-
itly by weighted sums of discrete element concentrations. The combination of DG and MPFA
methods allows using different numerical techniques that are specifically suited to achieve high
accuracy for each type of equations without using the time splitting procedure. A theta-scheme
time discretization was developed for advection and an implicit scheme for dispersion. An effi-
cient slope limiting technique that avoids iterative procedures was also developed for the explicit
scheme.

The model was used for the simulation of the transport of a tracer on unstructured meshes with
different advection/dispersion ratios and different �. The DG MPFA model gives accurate results
and the scheme �=0.6 can be a good alternative to the full explicit scheme, especially for highly
unstructured meshes.

The model DG MPFA was also tested for the simulation of a laboratory-scale experiment with
high viscosity contrast. The obtained results are accurate and in agreement with the experimental
results.
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Thèse de Doctorat de l’Université Paris 7, 1996.
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